How Reliably Can We Estimate Soil Test Values at Different Depths?

FRST Meeting – Feb 13, 2025

Soil Depths for LGU Fertilizer Rec Vary by State

Depth Recs by State

- 0-10cm: 2 states (4%)
- 0-15cm: 21 states (41%)
- 0-20cm: 13 states (25%)
- 0-30cm: 4 states (8%)

Lyons et al., 2023. SSSAJ: doi.org/10.1002/saj2.20536

Soil Stratification

- Creates large uncertainty if sampling different depths
- How to aggregate crop response trials from studies with different depths?

Key Questions to Move Beyond State Boundaries

- How does geography, soil type, and management history impact soil stratification?
- Can we develop generalized equations to convert soil test values to a depth different than what was sampled?

Site Selection

- Collaborators identified sites with different histories:
 - Tillage (n=99)
 - Fertilizer application (n=26)
 - Soil type (n=67)
- Each field
 - Soil sampled
 - Management survey to capture site history

Sampling Overview

- 197 fields sampled over 32 states
 - 2,936 soil samples
- 147 East fields
 - Full cores: 0-10, 0-15, 0-20cm
 - Incremental cores: 0-5, 5-10, 10-15, 15-20cm
- 50 West field
 - Full cores: 0-10, 0-15, 0-20, 0-30 cm
 - Incremental cores: 0-5, 5-10, 10-15, 15-20, 20-30cm
- Each soil sample replicated in field 2x

Laboratory Analysis

All soils →

- Penn State Analytical Lab pH, OM (LOI), Mehlich-3 extractable nutrients
- Univ of Arkansas soil texture (per site basis, 0-20cm)
- Soils from NE \rightarrow
 - Univ of Maine Modified Morgan extractable nutrients
- Soils with pH > 7.2 & West of Mississippi River →
 - Kansas State Univ Olsen P

Cropping Systems Sampled

Crop Type	Crops Included	Fields (%)
Corn	Grain, silage, sweet	34.4
Soybean		19.0
Small grain	Winter and spring wheat, triticale, oats, barley	14.0
Forage	Alfalfa, grass hay, mixed species	12.6
Fallow or no crop		8.1
Fiber	Cotton, hemp	3.1
Vegetable	Tomatoes, potatoes, brassicas, sugarbeet, chile	3.5
Other grain, pulse or oilseed	Rice, sorghum, millet, dry beans, canola, sunflower	3.5
Specialty, other	Peanut, peach	2.1

Soil Textural Distribution

11 out of 12 soil texture classifications represented

Number of Fields

- Coarse = 45
- Medium = 109
- Fine = 43

Soil Distributions

Stratification Ratios = SRs = 0-5cm/15-20cm

Variable	Min	5th	25th	50th	75th	95th	Max
рН	0.7	0.8	0.9	1.0	1.0	1.1	1.4
Organic Matter	0.5	1.0	1.2	1.4	1.8	3.0	11.6
Mehlich-3 P	0.6	1.0	1.3	2.3	3.9	10.9	34.2
Mod-Morgan P (col)	0.5	0.8	1.0	2.1	3.4	5.2	7.3
Olsen P	0.4	0.8	1.4	3.0	5.5	11.5	23.1
Mehlich-3 K	0.7	1.0	1.4	1.8	2.6	4.3	7.3

** Soil properties that were most stratified are extractable P, K and Zn

** 4 variables we're focusing on: pH < OM < M3K < M3P

Question #1:

How does geography, soil type, and management history impact soil stratification?

Exploring Trends with Soil Stratification

Geography
Soil Properties
Management

Simple Approach:

1) Average sites by various factors and look at trends with SRs (stratification ratios) between factors 2) Run ANOVAs to see if there are differences between factors (P < 0.05)

Exploring Trends with Soil Stratification

1. Geography

a. State b. Territory c. Region d. Division

Degree of stratification in a field is inconsistent across soil properties (weak correlations of SRs b/n pH, OM, M3P, M3K)

Correlations of SRs (Raw Data)

SR pH logM3K logOM logM3P 10.0 -7.5 -SR_pH Corr: Corr: Corr: 5.0 --0.094*** -0.242*** 0.034. 2.5 -0.0 2.5 -2.0 -Corr: Corr: logOM 1.50.319*** 0.319*** 0.5logM3P Corr: 0.328*** 2.0 ogM3K 1.51.0 0.5 1.0 1.5 2.0 2.5 0.5 1.0 2.0 1.2

Correlations of SRs (OM, M3P, M3K log-transformed)

Stratification Ratios by All

SR_pH SR_OM SR_M3P SR_M3K X л Stratification Ratio Stratification Ratios by Division SR_pH SR_OM SR_M3P \bigstar SR_M3K \bigstar

5

Stratification Ratios by Region

R IZER RECOMMENDATIO

Stratification Ratios by Geography

Exploring Trends with Soil Stratification

2. Soil Properties

a. Soil Textural Classifications b. Soil Textural Groupings c. Soil Order d. % Clay

SRs by Soil Classification

SRs by Soil Orders

Influence of Clay on Stratification Ratios

Exploring Trends with Soil Stratification

2. Management

a. Tillage b. NPK Fertilization, Lime c. Perennials, Cover Crops, Manure

SRs by Tillage Practices

SR_M3K

20

60

40

SRs by Fertilizer Practices

★

Perennials, Cover Crops, Manure

SRs by Manure Application

SRs by Manure App

Drivers of Soil Stratification Summary

- SRs b/n pH, OM, M3P, M3K within a field were poorly correlated
- Geography
 - Eastern soils more stratified with P and K than Western soils
- Soil Texture
 - Fine soils < SRs than Coarse and Med with OM and M3K
 - Soil Orders impacted SRs in P, K
- Management
 - Tillage: impacted SRs in OM, M3P, M3K
 - Fertilizer: trends with P and K, only significant with K
 - Manure: no trends
 - Perennials and CCs for 4 yrs: OM and M3K

How do we get at drivers of soil stratification?

How do we tease apart these relationships and quantify relative effects of factors driving stratification?

- Showing relationships with past management
 - Numeric variables = weak relationships
 - Discrete variables = clearer trends
- F-statistics with ANOVAs as a relativized metric of effect size?
- T-statistics with MLR?
- Other ideas??

Question #2:

Can we develop generalized equations to convert soil test values to a depth different than what was sampled?

Soil pH – Full cores

Soil pH

Standard Major Axis Regression

_									
	Variable	depths	Intercept	Slope	r2	pval	slope.r	slope.p	
	pН	x10.15	0.094	0.983	0.965	0.000	-0.089	0.079	
	pН	x10.20	0.046	0.982	0.938	0.000	-0.070	0.165	
	pН	x10.30	-0.348	1.019	0.899	0.000	0.056	0.586	
	pН	x15.20	-0.051	0.999	0.973	0.000	-0.005	0.914	
	pН	x15.30	-0.610	1.057	0.941	0.000	0.217	0.034	
	pН	x20.30	-0.515	1.055	0.970	0.000	0.290	0.004	
	OM	x10.15	-0.159	1.136	0.925	0.000	0.408	0.000	
	OM	x10.20	-0.202	1.204	0.863	0.000	0.425	0.000	
	OM	x10.30	-1.456	1.780	0.733	0.000	0.710	0.000	
	OM	x15.20	-0.016	1.053	0.948	0.000	0.215	0.000	
	OM	x15.30	-0.266	1.215	0.890	0.000	0.486	0.000	
	OM	x20.30	0.006	1.084	0.917	0.000	0.260	0.010	
	M3P	x10.15	6.295	1.027	0.977	0.000	0.169	0.001	
	M3P	x10.20	11.644	1.053	0.953	0.000	0.228	0.000	
	M3P	x10.30	-8.300	1.636	0.698	0.000	0.615	0.000	
	M3P	x15.20	5.332	1.024	0.986	0.000	0.195	0.000	
	M3P	x15.30	-3.552	1.394	0.861	0.000	0.645	0.000	
	M3P	x20.30	1.961	1.148	0.924	0.000	0.435	0.000	
	МЗК	x10.15	7.852	1.075	0.968	0.000	0.370	0.000	
	МЗК	x10.20	11.153	1.152	0.948	0.000	0.519	0.000	
	МЗК	x10.30	-13.583	1.354	0.844	0.000	0.583	0.000	
_	МЗК	x15.20	3.551	1.069	0.982	0.000	0.446	0.000	
	МЗК	x15.30	-9.130	1.218	0.939	0.000	0.614	0.000	
	МЗК	x20.30	-14.258	1.146	0.963	0.000	0.571	0.000	

Agreement and Tolerance Tests

- Developed in medical field to compare agreement of two test with different methodologies
- Requires setting agreement/tolerance limits a priori
 - What are they for this context??
- Calculates Bias → average (test_a test_b)

Distributions of Bias (shallow – deeper depth)

Next Steps to Contemplate

- Conversion equations are possible, but might not be appropriate
 - Stratification uncertainty if measurements aren't made
- Appropriateness and value of local vs. global conversion factors?
 - How to decide?
- SRs only \rightarrow 0-5cm/15-20cm, other depths possible