

Long-term Comparison of Targeted Soil Test P Values and Crop Removal-based Fertilization Strategies in Corn

Javed Iqbal, Assistant Professor

Soil Nutrient Management and Water Quality Specialist

University of Nebraska-Lincoln

Received: 30 November 2023	Accepted: 6 August 2024
DOI: 10.1002/agj2.21677	

Agronomy Journal

ORIGINAL ARTICLE Soil Fertility and Crop Nutrition

Long-term comparison of targeted soil test values and crop removal as a phosphorus fertilization strategy in corn

Swetabh Patel | Charles Shapiro D | Javed Iqbal D

Abstract

Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Correspondence Javed Iqbal, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA. Email: jiqbal2@unl.edu; jiqbal.soil@gmail.com Finding effective phosphorus (P) recommendation strategies to optimize corn (Zea mays L.) yield under varying yield levels and environmental conditions is continuously sought after. A 16-year study was conducted in Concord, NE, on Nora silt loam soil initially measuring $16 \pm 3 \text{ mg kg}^{-1}$ Bray-1 P. The study evaluated the impact of different P fertilization strategies on corn yield across various growing conditions (dry, normal, and wet years). Treatments included no P or N (NPNN), no P (NP),

Fertilizer Application Strategies

- Deficiency Correction/Sufficiency Concept Intended to optimize profit. The risk is that in some years, or some locations within fields, nutrient supply may limit yield.
- Crop Removal Add what you remove, depending on soil may need more or less.
- Maintenance and Build Intended to minimize potential for nutrient limitations to yield. The risk is that, in most years, no yield increase will occur with P application or with increased rate of P, thus *reducing profit*.

Basis for an application decision?

- Deficiency Correction
- "Critical Level"- is the soil test value
- above which fertilizer is not recommended because there is not a <u>significant</u> likelihood of yield increase.

Questions

- 1. Is the UNL critical level of 15 or 20 ppm Bray 1P appropriate for optimizing crop yields?
- 2. Does maintaining soil test phosphorus (STP) levels above the current critical levels (15 or 20 ppm) lead to greater increases in crop yields and profitability?
- 3. How does a crop removal-based phosphorus fertilization strategy compare to a critical level (CL)-based approach?
- 4. Do higher STP levels result in better corn yields and economic returns compared to the crop removal approach?
- 5. How do annual weather patterns influence phosphorus application strategies?

Several studies to address P questions at Northeast NE

PINE RIDGE RESERVATION RESERVATION

ux City

16-Years Long-Term P Study

Methods

- Haskell Agricultural Laboratory near Concord, NE.
- Soil type: Nora silt loam
- Study years (2000 2015).
- Continuous corn under rainfed condition.
- Randomized complete block design with six treatments.
- Plot size: six rows (0.76 m) wide and 60 ft (18.25 m) long.

16-Years Long-Term P Study

Treatments

- Soils were at ~16 mg kg⁻¹ at the beginning.
- Except the NPNN, all other treatments received a 168 kg ha⁻¹ of N as preplant.

NPNN	No P or fertilizer N or applied					
NP	Fertilizer N applied, no P					
CRP	Crop removal P applied					
Bray15	Soil tests maintained at 15 mg kg ⁻¹					
Bray30	Soil tests maintained at 30 mg kg ⁻¹					
Bray45	Soil tests maintained at 45 mg kg ⁻¹					

Impact of phosphorus application strategies on soil test phosphorus levels

 The initial application of P₂O₅ increased STP levels more than anticipated; however, these levels gradually decreased to approach the target levels in subsequent years.

Results

 CRP method required a higher total P application compared to the Bray-15 approach.

Impact of phosphorus application strategies on corn grain yield

- P application increased corn yield compared to NPNN and NP.
- No differences between the CRP vs.
 B15, though higher yield with CRP
- A trend of increased yield with higher P, with B45 producing greater grain yields than B15.
- No differences between CRP vs. B30 and B45.
- N application influenced yield in dry years, but not P application, however, P application positively effected yield during normal and wet years.

Impact of phosphorus application strategies on corn grain P concentration

Institute of Agriculture and Natural Resources

- P application increased corn grain
 P concentration compared to NP, irrespective of growing conditions
- No differences in grain P concentration between CRP vs. B15.
- A trend of higher grain P concentration with higher P levels, indicating luxury P consumption at higher P application rates, even during dry years.

Impact of phosphorus application strategies on corn grain P removal

- P application increased corn grain P removal compared to NP and NPNN, regardless of growing conditions.
- No differences in grain P removal between CRP vs. B15.
- A trend of higher grain P removal with higher P application rates, indicating luxury P consumption at higher P levels, even during dry years.

Impact of phosphorus application strategies on Net P Balance

- ΔSTP was positively correlated with net P balance.
- In the absence of P application (negative net P), STP values decreased by the end of the study period.
- B15 treatment, with either a negative or slightly positive net P balance, showed minimal or no change in final STP values.
- In contrast, B30 and B45, along with CRP treatment, had a positive net P balance and resulted in increased STP values.

Economic Impact of phosphorus application strategies across all years

	Average across year (2000 – 2015)							
	Δ Yield	Net income	Papplied	Cost	Net return	ROI		
Treatment	Mg ha ⁻¹	\$ ha ⁻¹	kg P ha ⁻¹ yr	¹ \$ ha ⁻¹	\$ ha ⁻¹			
CRP	0.76ab	107ab	20c	22c	85	4.9		
B15	0.52c	73c	16c	18c	55	3.6		
B30	066bc	93bc	27b	30b	63	3.1		
B45	0.93a	131a	40a	44a	88	3		
SE	0.26	36	1.9	2.1	36	1.3		
	P > F							
	*	*	***	***	NS	NS		

- CRP has greater yield increase than B15, but was similar to B45.
- Net Income was higher in B45 and CRP than B15 treatment.
- No significant differences in Net Return were observed between treatments.
- The CRP approach was the most economical, offering the lowest cost per bushel of yield increase and the highest return per pound of P applied.

Economic Impact of phosphorus application strategies across different moisture regimes

	Dry year			Normal year			Wet year		
	Δ Yield	Net return	ROI	Δ Yield	Net return	ROI	Δ Yield	Net return	ROI
Treatment	Mg ha ⁻¹	\$ ha ⁻¹		Mg ha ⁻¹	\$ ha ⁻¹		Mg ha ⁻¹	\$ ha ⁻¹	
CRP	-1.67	-258	-10.5ab	0.69b	76b	4.3ab	3.4	458	21.3a
B15	-1.72	-262	-14.5b	0.57b	62b	4.8a	2.59	347	21.3a
B30	-1.68	-268	-7.8a	0.63b	60b	3c	3.07	403	14.7ab
B45	-1.99	-325	-6.3a	1.04a	103a	3.5bc	3.5	449	11.7b
SE	0.29	43	1.7	0.09	14	0.6	0.28	40	2.4
	NS	NS	*	***	*	*	NS	NS	*

- P application should be avoided or
 minimized during dry years, as the
 financial risks increase with higher P
 application rates under these conditions.
- In wet year, no differences in ΔYield and net return among treatments receiving P application
- In normal year with adequate moisture and favorable growing conditions, maintaining soil at a very high P level (B45) maximized the yield increase and net return.

Conclusions

- Lower corn grain yield from our current (B15-B20) recommendations than CRP and B45 across all years, especially in wet years, indicate a potential yield loss especially when conditions favor high yield potential.
- High STP levels increased grain P concentration and removal without consistent yield improvement across all moisture scenarios, indicating that P removal may not necessarily be an indicator for grain yield.
- CRP-based application seems a better strategy for maximizing the ROI compared to other P strategies. However, a higher P (B45) that provides higher absolute return, can be used in soil
 - less prone to P loss or when budget constraints are not an issue
 - high yield is expected due to the abundance of other inputs driving crop growth, necessitating additional P to meet crop demand and achieve higher yield goals.
- Overall, the findings from this study suggest that the UNL P recommendations for dryland continuous corn, based on a deficiency correction approach, could be revisited.

THANK YOU

Javed Iqbal University of Nebraska-Lincoln jiqbal2@unl.edu 402-472-1432