

RESEARCH & EXTENSION

University of Arkansas System

Assessment of Bahia grass Forage Yield and Nutrient Uptake Response to Phosphorus and Potassium Fertilization

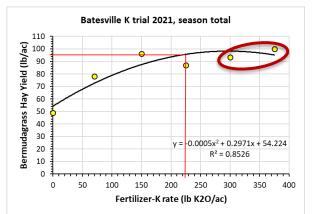
Bronc Finch Extension Soil Fertility

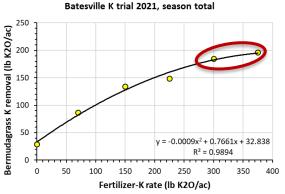
Background

4.5 Million Acres of Forages (USDA-NASS 2017)

 Largely dominated by Bermudagrass, with Bahiagrass prevalence in the southern portion of the state.

Estimates show lower K removal in Bahia (IPNI, 2014)


Different species – Same recommendations.


 Use of Bermudagrass recommendations on Bahia grass may be an inefficient use of fertilizers (Burton et al., 1997)

Recent research in Arkansas has identified concerns about potassium management in Forages

- − Yield returns are greatest when \geq 56 kg K₂O Ha⁻¹ application⁻¹ (Drescher et al., 2022)
- Up to 46% more uptake in High K₂O applications compared to the yield maximizing rate (Drescher et al., 2021)

Data Source: G. Drescher; University of Arkansas System Division of Agriculture

Methods

Objective

 Evaluate the influence of phosphorus and potassium applications on Bahia grass forage production and nutrient uptake.

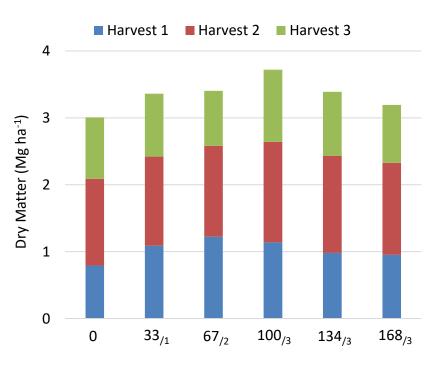
Two trials were established in the spring of 2023

- UADA SWREC in Hope, AR
- Predominately Bahia grass
- Sawyer Loam
 - Mehlich-3 P 16 ppm
 - Mehlich-3 K 47 ppm
 - 1:2 pH 5.5

Phosphorus Rate Trial

Methods

- Varied rates of P_2O_5
- Applied at:
 - Trial Establishment (Greenup)
 - After First Harvest
 - After Second Harvest
- All plots received
 - 67 kg N ha⁻¹ application⁻¹
 - 84 kg K₂O ha⁻¹ application⁻¹
- Harvested ~28 days following application

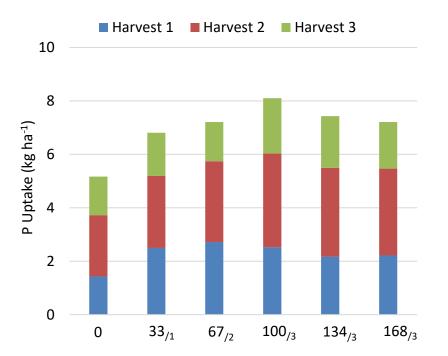


Treatment	Per Application $(kg P_2O_5 ha^{-1})$	Application Timing
0	0	N/A
33 _{/1}	33	Greenup
67 _{/2}	33	Greenup & 1 st Harvest
100 _{/3}	33	Greenup, 1 st & 2 nd Harvest
134 _{/3}	45	Greenup, 1 st & 2 nd Harvest
168 _{/3}	56	Greenup, 1 st & 2 nd Harvest

Phosphorus Rate Trial

Dry Matter Yield

- No response to P application
 - P Rate by Harvest (p = 0.9900)
 - Seasonal response to P (p = 0.4983)
- Average yield of 3.3 Mg DM ha⁻¹


Phosphorus Rate Trial

Dry Matter Yield

- No response to P application
 - P Rate by Harvest (p = 0.9900)
 - Seasonal response to P (p = 0.4983)
- Average yield of 3.3 Mg DM ha⁻¹

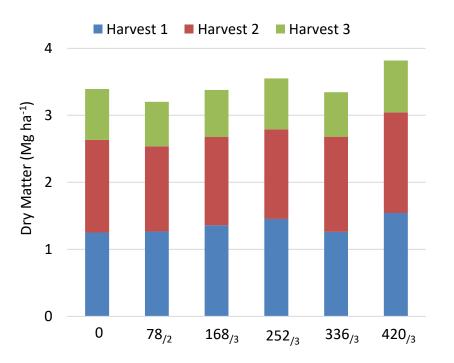
<u>P Uptake</u>

- No response to P application
 - P Rate by Harvest (p = 0.9518)
 - Seasonal response to P (p = 0.1083)
- P uptake ranged 2.9 kg P ha⁻¹ for the season.

Potassium Rate Trial

Methods

- Varied rates of K_2O
- Applied at:
 - Trial Establishment (Greenup)
 - After First Harvest
 - After Second Harvest
- All plots received
 - 67 kg N ha⁻¹ application⁻¹
 - 77 kg P_2O_5 Ha⁻¹ at Greenup
- Harvested ~28 days following application

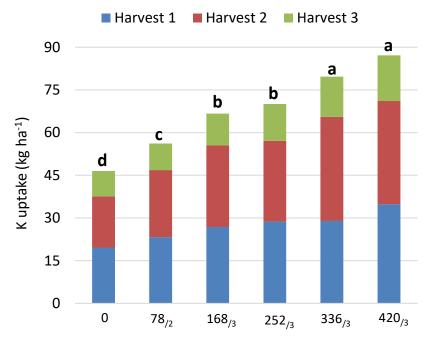


Treatment	Per Application (kg K ₂ O ha ⁻¹)	Application Timing
0	0	N/A
78 _{/2}	39	Greenup & 1 st Harvest
168 _{/3}	56	Greenup, 1 st & 2 nd Harvest
252 _{/3}	84	Greenup, 1 st & 2 nd Harvest
336 _{/3}	112	Greenup, 1 st & 2 nd Harvest
420 /3	140	Greenup, 1 st & 2 nd Harvest

Potassium Rate Trial

Dry Matter Yield

- No response to K application rate
 - K Rate by Harvest (p = 0.9966)
 - Seasonal response to K (p = 0.8434)
- Average yield of 3.4 Mg DM ha⁻¹


Potassium Rate Trial

Dry Matter Yield

- No response to K application rate
 - K Rate by Harvest (p = 0.9966)
 - Seasonal response to K (p = 0.8434)
- Average yield of 3.4 Mg DM ha⁻¹

<u>K Uptake</u>

- Total K uptake increased with Rate
 - K rate by Harvest (p = 0.3845)
 - Seasonal response to K (p < 0.0001)
- 41 kg K ha⁻¹ range in uptake, with a maximum of 87 kg K ha⁻¹

Take Homes

Forage Yield

- Yield responses are limited in this single-year study.
- Environmental conditions may have impacted yield responses (data not shown).

Nutrient Uptake

- Phosphorus uptake followed a similar pattern as yield.
- Potassium uptake increases with K application, regardless of yield response.

Future work

- Identify optimum application rate to maximize yield, reducing luxury uptake
- Identify potential differences in species management
- Identify the impact on forage quality

Questions?

Bronc Finch

University of Arkansas System Division of Agriculture

bfinch@uada.edu

(501) 425-9750

