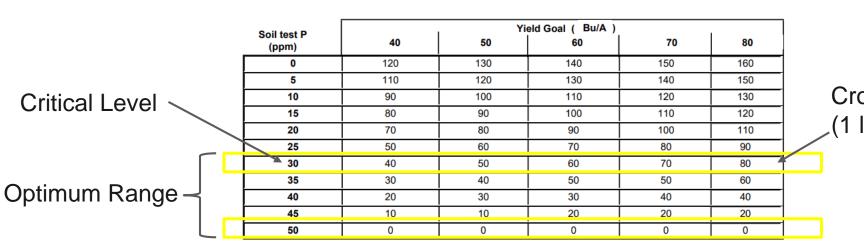
FRST P and K Response Trials at Penn State - 2021

Charlie White, Hanna Wells, John Spargo

extension.psu.edu

Overview of Trials

- One site of K response plots
 - 0, 25, 50, 100, 200 lbs/ac K₂O as muriate of potash
 - Broadcast application, no incorporation
 - No-till soil and crop management
- Two sites of P response plots
 - 0, 20, 40, 80, 160 lbs/ac P_2O_5 as triple superphosphate
 - Broadcast application, no incorporation
 - 1 site: no-till management
 - 1 site: tillage prior to crop planting and fertilizer application
- Baseline soil samples collected per block in March
 - 0-10cm, 0-15cm, 0-20cm x 15 cores per block
 - Mehlich 3 soil test extraction at PSU AASL
- Soybeans planted at all three sites in late May, 30" row spacing
- Fertilizer treatments applied within 1 week of planting
- Fertilizer plots 6 rows wide x 35' or 45' long
- In K trials applied flat rate of P, in P trials applied flat rate of K


Penn State Fertility Recommendations

- Mehlich 3 Soil Test Optimum Range for soybeans and most other grain crops
 - 100-150 mg/kg K
 - 30-50 mg/kg P
- Recommended soil sampling depth for annual crops: 0-6" or 8"

Phosphorus Recommendation (Ib P2O5/A):

(Optimum soil test P: 30 - 50

- Build and Maintain Approach to Fertilizer Recommendations
 - Build: Greater than crop removal fertilizer rate below the critical soil test level
 - Maintain: Crop removal fertilizer rate at the critical soil test level
 - Drawdown: Declining rate of fertilizer as soil test increases within the optimum zone, zero fertilizer at the top of the optimum range and above

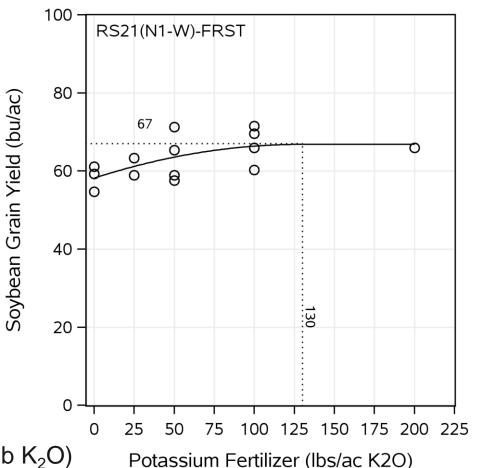
Crop Removal Fertilizer Rate $(1 \text{ lb } P_2O_5/\text{bu soybean})$

https://agsci.psu.edu/aasl/soil-testing/fertility/handbooks/agronomic

Potassium Response Trial

Soil Properties

Sample Depth (cm)	рН (1:1 Н2О)	Mehlich 3 P (mg/kg)	Mehlich 3 K (mg/kg)	CEC (meq/100g)	Organic Matter (%)	Sand (%)	Silt (%)	Clay (%)
0-10	6.9	48	102	9	2.4			
0-15	6.6	43	92	10	2.2			
0-20	6.6	39	81	9	2.1	41	32	26


Results

- Groundhog feeding affected several plots
- ANOVA F-test, P=0.02
 - 50, 100 lbs/ac rates > untreated
- Quadratic-plateau response curve fit
 - $y = 58 + 0.13x 0.00052x^2$
 - First-order term, P=0.09
 - Second-order term, P=0.38

Discussion

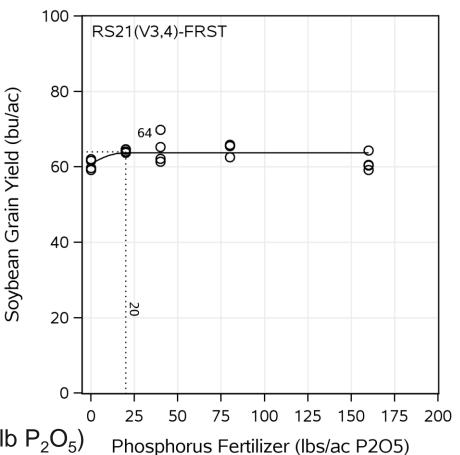
- Economic optimum K₂O rate = 88 lbs/ac (\$13.60/bu beans, \$0.52/lb K₂O)
- Crop Removal $K_2O = 94$ lbs/ac
- PSU AASL K₂O recommendation = 110-120 lbs/ac

Yield Response

Phosphorus Response Trial #1 (Tilled Site)

Soil Properties

Sample Depth (cm)	рН (1:1 Н2О)	Mehlich 3 P (mg/kg)	Mehlich 3 K (mg/kg)	CEC (meq/100g)	Organic Matter (%)	Sand (%)	Silt (%)	Clay (%)
0-10	7.0	53	148	9	1.8			
0-15	7.0	52	144	8	1.7			
0-20	6.8	49	136	9	1.7	32	42	25


Results

- ANOVA F-test, P=0.04
 - 20, 40, 80 lbs/ac P_2O_5 rates > untreated
 - 4 bu/ac yield increase
- Quadratic-plateau response curve fit
 - Plateau reached at first P addition level

Discussion

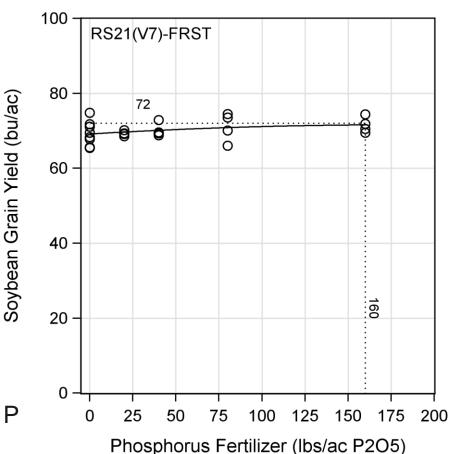
- ROI @ 20 lbs/ac P_2O_5 rate = \$38.40/ac (\$13.60/bu beans, \$0.80/lb P_2O_5)
- PSU AASL P_2O_5 recommendation = 0-20 lbs/ac
- Crop Removal $P_2O_5 = 64$ lbs/ac

Yield Response

Phosphorus Response Trial #2 (No-Till Site)

Soil Properties

Sample Depth (cm)	рН (1:1 Н2О)	Mehlich 3 P (mg/kg)	Mehlich 3 K (mg/kg)	CEC (meq/100g)	Organic Matter (%)	Sand (%)	Silt (%)	Clay (%)
0-10	6.6	35	160	11	2.1			
0-15	6.7	32	136	12	2.1			
0-20	6.7	30	120	12	2.1	20	44	36


Results

- ANOVA F-test, P=0.62
- Quadratic-plateau response curve fit
 - First-order term, P=0.40
 - Second-order term, P=0.70
- Site was unresponsive to P additions

Discussion

- Despite lower soil test P than site 1, site 2 was unresponsive
 - Consistent with existing critical soil test P level of 30 mg/kg M3 P
 - Mycorrhizal effect in no-till soils?
- PSU AASL P_2O_5 recommendation = 70 lbs/ac
- Crop Removal $P_2O_5 = 72$ lbs/ac

Yield Response

Questions?

