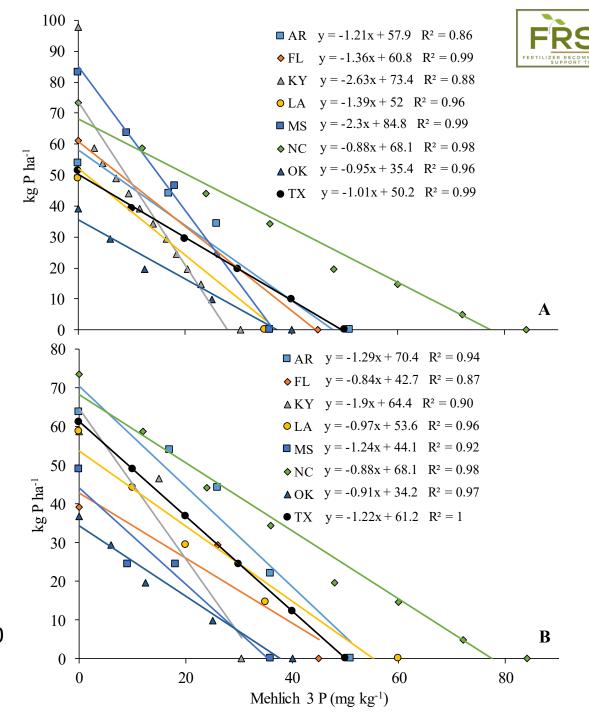
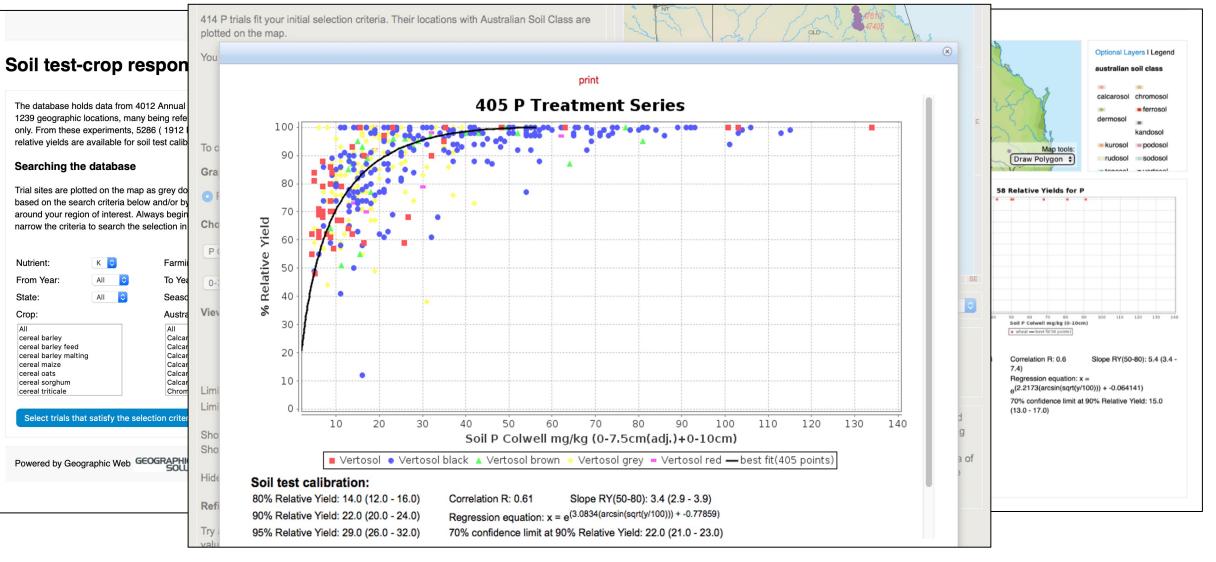
Modernizing Fertilizer Recommendations: The Fertilizer Recommendation Support Tool (FRST)

ALTA Winter Meeting – March 1, 2023

Dr. Sarah E. Lyons


Deanna Osmond, Nathan Slaton, John Spargo, Pete Kleinman,

Daniel Kaiser, Matt Yost, & Greg Buol


The Need for FRST

- FRST Began with Southern Soil Fertility Working Group (June 2018)
- Realized large differences in P recommendations across states
- Zhang, H., J. Antonangelo, J.H. Grove, D.L. Osmond, S. Alford, R.J. Florence, G. Huluka, D.H. Hardy, J.T. Lessl, R.O. Maguire, R.S. Mylavarapu, L. Oldham, E.M. Pena-Yewtukhiw, T.L. Provin, N.A. Slaton, L.S. Sonon, D. Sotomayor, and J.J. Wang. 2020. Soil Test Based P and K Rate Recommendations across the Southeast: Similarities and Differences; Opportunities and Challenges. Soil Sci. Soc. Am. J. DOI: 10.1002/saj2.20280

Working together on a larger scale: Big Data

Fertilizer Recommendations Support Tool (FRST)

A Foundation for Modernizing Fertilizer Recommendations

Goal of FRST

To advance the accuracy of soil-test-based fertilizer recommendations by developing a database and decision tool from which recommendations can be scientifically developed and defended as best management practices.

Objectives of FRST

- 1. Develop a community of practice to galvanize interest and participation around soil fertility.
- 2. Develop a searchable tool that provides soil test correlation and calibration graphs with statistical confidence intervals for the area of interest (general users)
- 3. Provide data for nutrient management scientists and modelers to for in-depth analysis of soil test calibration and correlation data (researchers)

FRST Team + Collaborators

Nutifafa Adotey Shannon Alford **Brian Arnall** Dana Ashford Doug Beegle* Carl Bolster Svlvie Brouder Tom Bruulsema Michael Buser Miguel Cabrera Ignacio Ciampitti Jason Clark Adrian Correndo Steve Culman Leo Deiss Jagman Dhillon **Gerson Drescher** Bhupinder Farmaha Joshua Faulkner **Bronc Finch Robert Florence Robert Flynn** Luke Gatiboni Daniel Geisseler John Grove David Hardy **Daren Harmel** Joseph Heckman John Hoban **Bryan Hopkins** Gobena Huluka Javed Igbal Jim Ippolito Sindhu Jagadamma

University of Tennessee **Clemson University Oklahoma State University USDA-NRCS** Penn State **USDA-ARS** Purdue University **IPNI-Canada** USDA-ARS University of Georgia Kansas State University South Dakota State Univ. Kansas State University Washington State Univ. Ohio State University Mississippi State Univ. University of Arkansas Clemson University University of Vermont University of Arkansas University of Tennessee New Mexico State Univ. North Carolina State Univ. Univ. of California - Davis University of Kentucky NCDA&CS **USDA-ARS Rutgers University** East Carolina University Brigham Young University Auburn University University of Nebraska Colorado State University University of Tennessee

John Jones **Daniel Kaiser Gurpreet Kaur Quirine Ketterings** Gene Kim Pete Kleinman **Greg LaBarge** Gabe LaHue Jay Lessi Sarah Lyons **Rory Maguire** Antonio Mallarino Andrew Margenot Emma Matcham Marshall McDaniel Fernando Miguez Robert Miller Amber Moore Tom Morris* Jake Mowrer Stephanie Murphy Rao Mylavarapu Kelly Nelson Nathan Nelson Leanna Nigon Deanna Osmond **Rasel Parvej** Austin Pearce Eugenia Pena-Yewtukhiw Tim Pilkowski **Rishi Prasad Tony Provin** Vaughn Reed

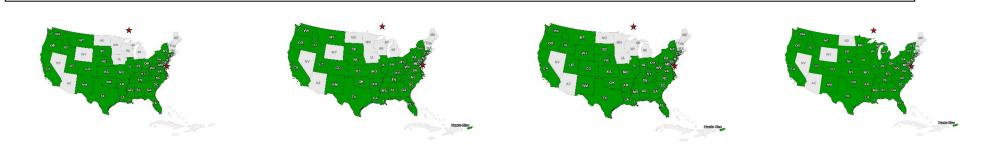
University of Wisconsin University of Minnesota University of Missouri **Cornell University** USDA-NRCS USDA-ARS **Ohio State University** Washington State Univ. University of Georgia North Carolina State Univ. Virginia Tech University Iowa State University University of Illinois University of Florida Iowa State University Iowa State University Formerly Colorado State Oregon State University University of Connecticut Texas A&M University Rutgers University University of Florida University of Missouri Kansas State University The Fertilizer Institute North Carolina State Univ. Louisiana State University North Carolina State Univ. Univ. of West Virginia USDA-NRCS Auburn University Texas A&M University

Mississippi State Univ.

Mark Reiter Edwin Ritchey Matthew Ruark Dorivar Ruiz Diaz Amir Sadeghpour Hubert Savoy* Charles Shapiro* Lakesh Sharma Andrew Sharpley * **Amy Shober** Frank Sikora **Gurbir Singh** Jasdeep Singgh Sintem Nathan Slaton Jared Spackman **Carissa Spencer David Sotomavor** John Spargo **Kurt Steinke** Haiying Tao David Tarkalson Gurpal Toor Teferi Tsegaye Pete Vadas Jeff Volenec Jordon Wade Forbes Walker Jim Wang Charles White Stephen Wood Matt Yost Frank Yin Hailin Zhang

University of Kentucky University of Wisconsin Kansas State University Southern Illinois University University of Tennessee University of Nebraska University of Florida University of Arkansas University of Delaware University of Kentucky University of Missouri University of Missouri University of Georgia University of Arkansas University of Idaho USDA-FSA University of Puerto Rico Penn State Michigan State University University of Connecticut USDA-ARS University of Maryland USDA-ARS USDA-ARS **Purdue University** University of Missouri University of Tennessee Louisiana State University Penn State The Nature Conservancy Utah State University University of Tennessee **Oklahoma State University**

*Retired

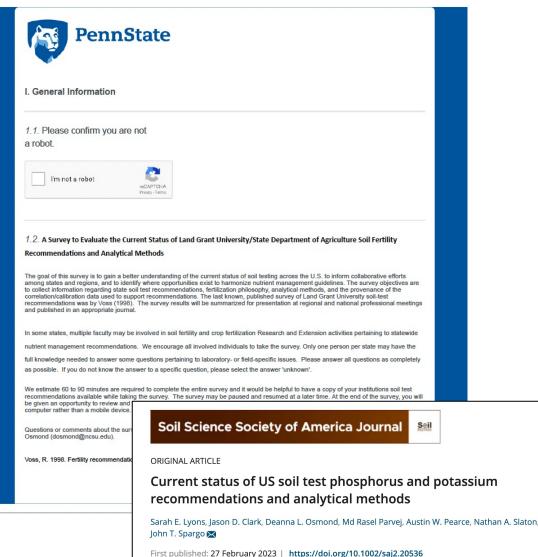


FRST Project Collaboration: 2018-2022

Buy-in from the community In-person meetings 2019, 2020 Monthly conference calls Volunteers for specific activities

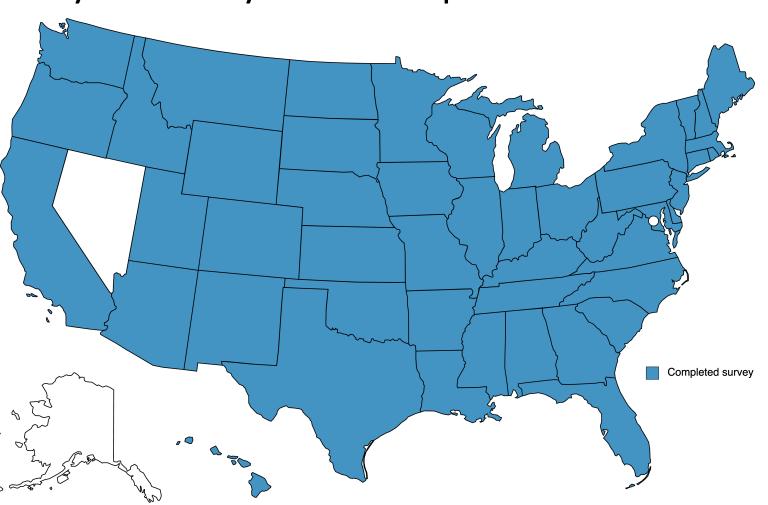
- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

- 1. Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

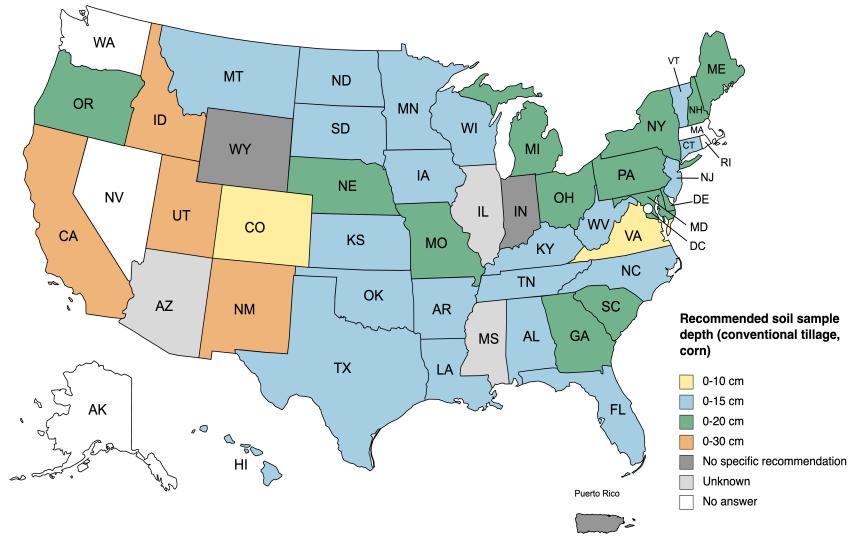

National Land Grant University Soil Fertility Survey

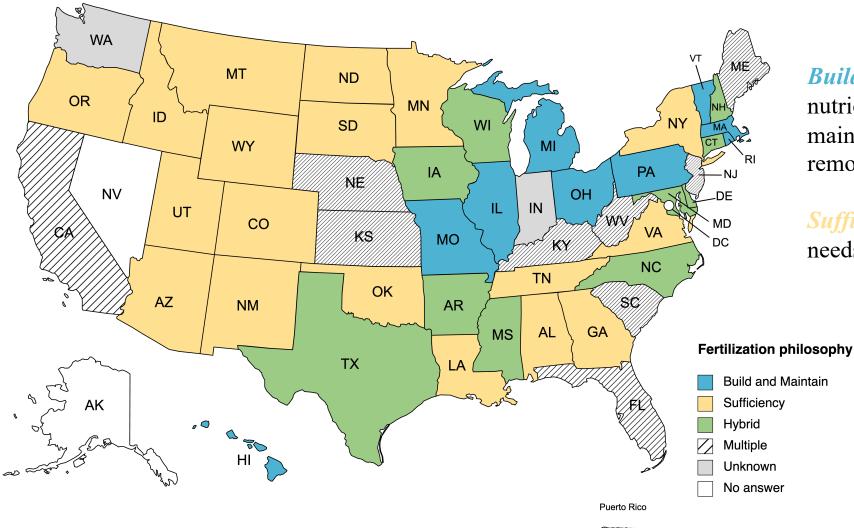
- Goals are to gain a better understanding of the current status of soil testing across the U.S. to <u>direct collaborative</u> efforts among states and regions, and to identify where opportunities exist to <u>harmonize recommendation</u> <u>guidelines</u>.
- Collected Information About:
 - Analytical methods
 - Fertilizer recommendations and philosophy used
 - Status of correlation/calibration data
 - Correlation: Relationship between crop yield and a soil test nutrient
 - Calibration: Crop response to fertilization at specific nutrient concentrations

National Land Grant University Soil Fertility Survey


- 48 states and Puerto Rico
- 100 questions in 9 different categories, including laboratory and research funding, soil test recommendations, soil analysis methods, soil sampling, and soil health
- Survey and data published in Ag Data Commons (Spargo et al., 2022, doi:10.15482/USDA.ADC/1526506)
- SSSAJ article: doi.org/10.1002/saj2.20536

National Soil Fertility Survey: Participation


 By June 2nd, 2020, 60
 responses representing 48 states and Puerto
 Rico were received.

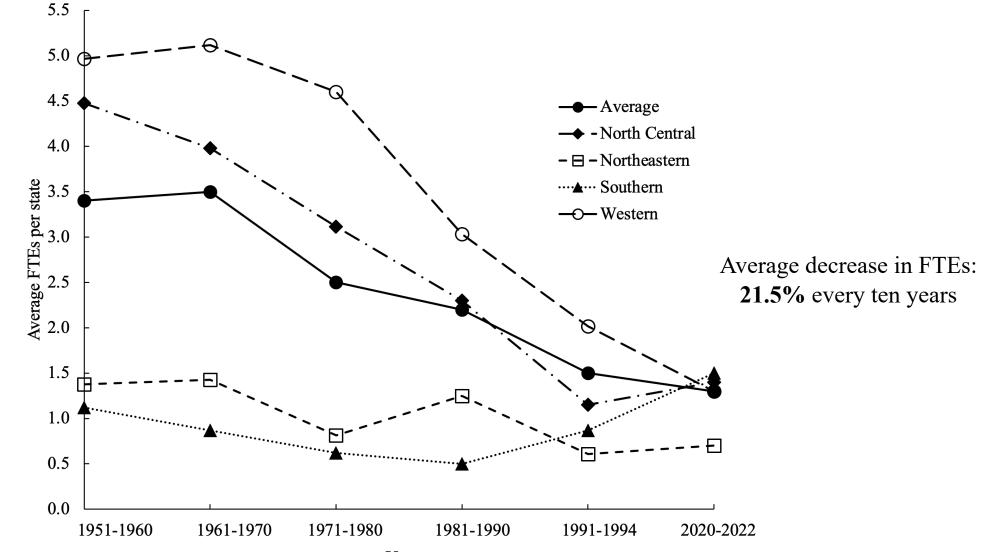


National Soil Fertility Survey: Results

National Soil Fertility Survey: Results

Build and Maintain: Build soil nutrients to optimum range, then maintain by applying at crop removal

Sufficiency: Apply to meet crop needs, not build soil fertility



National Soil Fertility Survey: Results 2002 or later 2001 or earlier Unknown No answer Ρ Κ WA WA MT ND ME MT ND OR MN OR MN ID SD WI ID WI SD WY MI WY MI IA PA NJ NE PA IA NE NV OH DF NV OH IL IN UT IN UT IL CO CA VA СО KS MO VA DC CA KY KS MO DC KY NC NC ΤN ΤN OK ΑZ OK SC NM AR ΑZ SC AR NM GA AL MS MS GA AL ΤХ IA ΤХ LA FL AK FL Puerto Rico 20 Puerto Rico HI HIS

Year current soil test field correlation was last established or validated for corn

National Soil Fertility Survey: Results

Data for years 1951-1994 obtained from Voss (1998).

- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

Development of a Minimum Dataset Protocol for Soil Test Correlation and Calibration Trials

- Standardize information/data that should be collected to guide soil-test correlation and calibration research
 - Consensus among scientists
 - Guide research protocols and publication of research results
 - Qualify data for inclusion in metaanalyses
 - Promote good science but not be overly restrictive
 - Required vs recommended data
 - Facilitate data sharing

Minimum Dataset Organization

- Data origin and ownership
- Soil sample collection and processing details
- Soil analysis and properties
- Metadata
 - Trial & treatment description
 - Cropping system metadata
 - Field management
 - Location & weather
 - Harvest details
 - Experiment design, structure and analysis
- Data
 - Means vs plot-level data

DOI: 10.1002/saj2.20338	Soil Science Society of America Journal
REVIEW & ANALYSIS	
Minimum datacat a	nd metadata guidelines for soil-test
	8
correlation and cali	bration research
Nathan A. Slaton ¹ 💿 👘 Sara	ah E. Lyons ² 💿 📋 Deanna L. Osmond ² 💿 🗍
	we W. Culman ⁴ ⁽¹⁾ Gerson Drescher ¹ ⁽¹⁾
	ohn Hoben ⁵ Peter J. A. Kleinman ⁶
	Robert O. Miller ⁸ Austin Pearce ² Amy L. Shober ⁹
John T. Spargo ¹⁰ 0 Jeff	
John 1. Spargo 🤍 👘 Jen	j. volence
	es, Univ. of Arkansas System Division of Agriculture, 1366 West Altheimer Dr., Fayetteville, AR 72704, USA
² Dep. of Crop and Soil Sciences, NC State Un	
³ Dep. of Agronomy, Purdue Univ., 915 West S	tate St., West Lafayette, IN 47907-2054, USA s. The OH State Univ., 1680 Madison Ave., Wooster, OH 44691, USA
	s, The OH State Chiv, 1080 Madison Ave., woosler, OH 44091, USA Howell Science Complex N108, Mail Stop 551, Greenville, NC 27858, USA
	Research Unit, 2150 Centre Ave., Building D, Suite 100, Fort Collins, CO 80526, USA
7 Dep. of Plant and Soil Sciences, Univ. of Ken	
8 Dep. of Soil and Crop Sciences, CO State Un	
⁹ Plant and Soil Sciences, Univ. of Delaware, T	
¹⁰ Agricultural Analytical Services Lab., PA St	ate Univ., University Park, PA 16802, USA
Correspondence Nathan A. Slaton, Dep. of Crop, Soil, and	Abstract
Environmental Sciences, Univ. of Arkansas	Soil-test correlation and calibration data are essential to modern agriculture, and
System Division of Agriculture, 1366 West Altheimer Dr., Fayetteville, AR 72704, USA.	their continued relevance is underscored by the expansion of precision farming and
Email: nslaton@uark.edu	the persistence of sustainable soil management priorities. In support of transparent,
Assigned to Associate Editor David Hardy.	science-based fertilizer recommendations, we seek to establish a core set of required
Assigned to Associate Editor David Hardy.	and recommended information for soil-test P and K correlation and calibration stud-
Funding information Agricultural Research Service, Grant/Award	ies, a minimum dataset, building on previous research. The Fertilizer Recommenda-
Number: 58-8070-8-016; Natural	tion Support Tool (FRST) project team and collaborators are developing a national
Resources Conservation Service,	database that will support a soil-test-based nutrient management decision aid tool.
Grant/Award Numbers: 69-3A75-17-45, NR203A7500010C00C	The FRST team includes over 80 scientists from 37 land-grant universities, two state
	universities, one private university, three federal agencies, two private not-for-profit
	organizations, and one state department of agriculture. The minimum dataset com-
	mittee developed and vetted a robust set of factors fo minimum dataset consideration that includes information on soil sample collection and processing, soil chemical
	and physical properties, experimental design and statistical analyses, and metadata
	and properties, experimental design and statistical anaryses, and inciduata
	ip; BFDC, Better Fertilizer Decisions for Cropping Systems; FRST, Fertilizer Recommendation Support Tool.
	reative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

DOI: 10.1002/Saj2.20338

Minimum Dataset for Correlation and **Calibration Trials**

Required Recommend		Recommended	Soil-test property or	Minimum dataset	Level of m	easurement ^c	
	•	_	information ^a	category ^b	SYT	MYT	Data ^d
Category	data	data	pH	Required	Block	Treatment	$n, \bar{x}, variance$
			SOM	Required	Block	Treatment	$n, \bar{x}, variance$
Soil sample collection and	9	5	Р	Required	Block	Treatment	$n, \bar{x}, variance$
processing metadata	9	J	K	Required	Block	Treatment	$n, \bar{x}, variance$
			Ca	Required	Block	Treatment	$n, \bar{x}, variance$
Soil chemical and physical		19	Mg	Required	Block	Treatment	$n, \bar{x}, variance$
• •	6		Na	Recommended	Site	Site	x
properties			PSD	Recommended	Site	Site	x
Crop coil and putriant	26	17	Ex. acidity	Recommended	Site	Site	x
Crop, soil, and nutrient			Buffer pH	Recommended	Site	Site	x
management metadata			CEC	Recommended	Site	Site	\bar{x}
		9	Total P	Recommended	Site	Site	x
Experimental design and	8		Al	Recommended	Site	Site	\bar{x}
statistical analysis			S	Recommended	Site	Site	\bar{x}
statistical analysis	Fe	Recommended	Site	Site	\bar{x}		
			Mn	Recommended	Site	Site	\bar{x}
	Zn	Recommended	Site	Site	\bar{x}		
Soil Sci. Soc. America J. (2022)	Cu	Recommended	Site	Site	x		
	В	Recommended	Site	Site	x		
DOI: 10.1002/saj2.20338	EC	Recommended	Site	Site	x		
			CaCO ₃ content	Recommended	Site	Site	x

Template for Data Submission

• www.soiltestfrst.org/resources

A Not secu

	13 *	: X V	$J_{\mathcal{K}}$	
cure soiltestfrst.org/resources/				
GOALS AND OBJECTIVES FUNDING PROJECT TEAM AND COLLABORATORS PRESENTATIONS RESOURCES -				
FRST Resources	A Trial ID	B Nutrient of Interest	C Country	
	2 3 1			
FRST Fact Sheet	5 7			
An overview of what the FRST project is, its various phases, and who is involved.	3			+
FRST Legacy Data Collection Guide	0			
This guide provides collaborators with instructions for submitting quality data from past research on grop response to fertilizers.	2 3 4			+
Submitting Data to FRST	→ 6			+
This template was developed for submitting data to the FRST National Soil Test Correlation and	7 8 9			+
Calibration Database to facilitate adherence to the published minimum dataset and metadata guidelines. We encourage anyone collecting soil test correlation and calibration data to use this	0			
template.	2 3			-
Submitting Data to Ag Data Commons	4 5			+
USDA Ag Data Commons Website Ag Data Commons Data Submission – Information needed for data submission to the National	7 8			+
Agricultural Library.	9			

	oSave 💽 Off	の日で、ふ	~ 🍝	6.6.22-F	RST-Data-Submission-Te	emplate • Saved •			Search (Alt+Q)		
ile	Home		je Layout Forr			Help Acrobat					
2	🔏 Cut	Calibri	× 12	A^ A =	=_ & ab	Wrap Text		~			
aste	Copy	B T				Marna R Cantar	¢ %		Conditional Format a Formatting ~ Table ~	15	
~	💞 Format	Painter			= = = = =	ivierge occenter	Ф. 10	2 .00 →.0	Formatting ~ Table ~		
					Alignment		Numl	ber 🗔		Styles	
	Ψ	: × 🗸	f _x								
		_			_	-	-				
_	A	В	С	D	E	F	G Latitude	H	I Nearest NOAA	Weather Station	We
		Nutrient of					(decimal	(decimal		Latitude (decimal	
	Trial ID	Interest	Country	State	Nearest City	County	degrees)	degrees)	ID	degrees)	(de
_							-				_
											-
							_				_
							_				
							_				
										-	
_											
	>	User & Publicatio	a lafamatian	Trial Information	Soil Methods	Soil Data Cr	op Information	Yield Data	Plant Tissue Data	Weather Data	

- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

FRST Legacy Database

- Database accessed by the Fertilizer Recommendation Support Tool (FRST)
- Contains USA soil-test P and K correlation and calibration trial data
- Data collected from many sources
 - Journal articles, extension and research bulletins, conference proceedings, dissertations and theses, spreadsheets, and word-` processing documents
 - Raw and summarized

P: 18 P: 8 P: 32 P: 10 K: 27 K: 17 P: 2 P: 18 K: 15 P: 16 K: 1 K: 1 P: 6 K: 7 P: 7 K: 60 K: 89 K: 54 P: 75 P: 10 P: 114 K: 6 P: 60 K: 2 K: 2 P: 6 K: 4 P: 16 P: 2 K: 5 K: 2 K: 19 P:1 K: 3 K: 71 K: 4 P: 8 P: 79 P: 69 P: 4 K: 30 K: 11 P: 12 P:4 P:9 K: 124 K: 3 P: 101 K: 6 K: 85 K: 2 P: 2 P: 4 P: 84 K: 33 P: 27 K: 2 P&K P only K only 00 None To Do

P and K Trials in the FRST Database

Collecting Legacy Data

FRST Legacy Database Summary

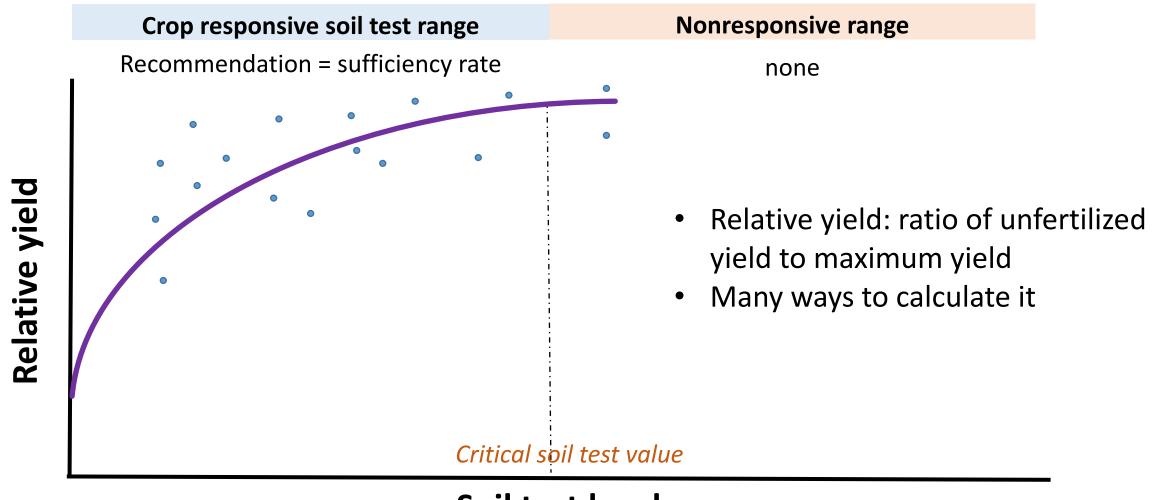
Trials	1,566	Years	1949 - 2022
Crops	Alfalfa, bahiagrass, barley, bermudagrass, brachiariagrass, camelina, corn (grain and silage), chickpea, clover/grass mix, cotton, flax, lentil, oat, pea, peanut, potato, rice, sorghum, sorghum x sudangrass, soybean, sugarcane, sweet potato, wheat	P methods	Mehlich-1 & -3, Bray-1 & -2, Olsen, Morgan, Modified Morgan, MS Soil Test (Lancaster), acetic acid, resin, Pi, water, double acid, total P, Oxalate, ammonium acetate, Haney, Truog, sodium acetate, oxalate, AB-DTPA
States	AL, AR, CO, CT, DE, FL, GA, IA, ID, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NY, OH, OK, OR, PA, PR, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, WV	K methods	Mehlich-1 & -3, ammonium acetate, nitric acid, saturation, rate of release, MS Soil Test (Lancaster), Olsen, Morgan, Modified Morgan, resin, tetraphenylboron, calcium chloride

Data is continuously collected, curated, and entered into the database as it is found or becomes available.

FRST Legacy Database: Data Publications

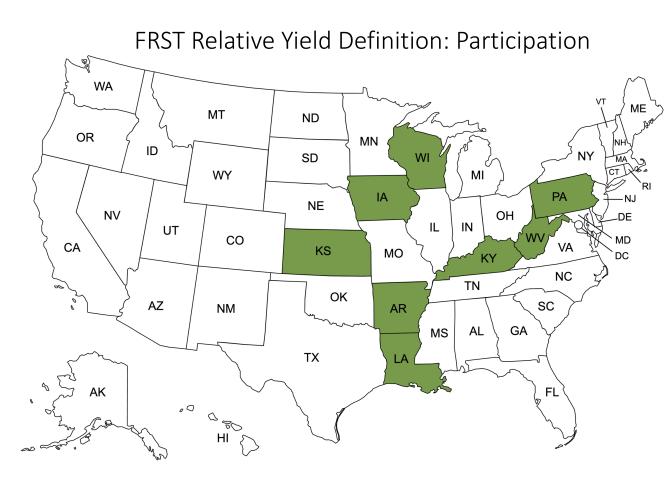
USDA Ag Data Co U.S. DEPARTMENT OF						Providing Centra	I Access to USDA's Open Research Data	
My Workbench Datasets So	oftware & Tools	About Us -	News	Contact Us	Submit Dataset	search	Q	
/ Home mproved Tropical Forage Fertilize	er-P Calibration: It	a support of EBS	T to cond	luct state-level	soil-fertility correlation	and calibration trials for	P and/or K	
View published				Clone dataset				
			Tale	Cione dataset				
S. Public Domain				•		Calibration el soil-fertili		
her Access					trials for P		,	
ne information on this page ne dataset metadata) is also	Tropical fora	ges grown for fe	ed is the a	agricultural con	nmodity occupying the	largest land area in Pu	erto Rico (ELA,	
vailable in these formats:	2012; USDA	-NASS, 2018). H	ligh nutrie	ent extraction ra	ates and crop respons	e to fertilizer-phosphoru	s (P) have been	
	documented in Puerto Rico (Vicente-Chandler, 1982). Current recommendations are to apply 2,000 lb/acre of complete							
JSON 🔩 RDF	formulation 15-5-10 (or 100 lb P2O5/ac). Soil test levels are not used to guide P fertilization; rather decisions are made							
the DKAN API	intuitively. For example, in manured soils only fertilizer N as urea is applied.							
	Current soil t	test P critical leve	els are 22	and 16 mg P/k	kg for Bray 1 and Olse	n-P, respectively. The se	oil test critical levels	
	have not bee	en validated in Pu	uerto Rico	o and are derive	ed from an extensive I	terature review (Sotom	ayor-Ramírez and	
ta Extent	Martínez, 20	19). There is a n	eed to va	lidate current s	oil test critical levels a	s well as carry out calib	ration studies (crop	
•	response to fertilizer P at varying soil test levels). We report on a calibration experiment using an improved tropical							
	forage, Brac	hiaria decumben	<i>s</i> in a soi	I with soil test F	o in the Low category.			
9	Materials and	d Methods						
	An experime	ent was establish	ed in a pr	ivate farm in La	ajas, southwest Puerto	Rico. A 0.09 ha field w	as selected having a	
	history of lim	ited fertilization.	The pred	ominant soils w	vere Paso Seco (Fine,	mixed, superactive, iso	hyperthermic Entic	
	Udic Haplust	terts) and Palma	rejo (Fine	, mixed, semia	ctive, isohyperthermic	Typic Haplustults). An a	rea within the field	
Looflot Man data @ OpenStreetMan	was selected	d having soil test	P (Brav1) concentration	ranging from 1.2 to 1	6 mg P/kg. Soil pH rand	red from 5.4 to 6.4	

FRST Facilitated Submissions


- Fisher, T. R., Lyons, S. E., Roth, J. A., & Fisher, T. E. (2021). Legacy Phosphorus and Potassium Correlation Experiments: Qulin, Missouri. *Ag Data Commons*. https://doi.org/10.15482/USDA.ADC/1524293
- Jagadamma, S., & Savoy, H. J. (2020). Comparison of four extractants used in soil phosphorus and potassium testing for two soils in a corn-wheat-soybean rotation in Tennessee receiving various amounts of P and K fertilizer. *Ag Data Commons*. https://doi.org/10.15482/USDA.ADC/1519155
- Rogers, C. W., Dari, B., & Liang, X. (2022). Plant, grain, and soil response of irrigated malt barley as affected by cultivar, phosphorus, and sulfur applications on an alkaline soil. *Ag Data Commons*. https://doi.org/10.15482/USDA.ADC/1526436
- Savoy, H. J., Leib, B. G., & Grant. T. (2021). Alfalfa response to potassium rate and timing of application. Ag Data Commons. https://doi.org/10.15482/USDA.ADC/1520724
- Slaton, N. A., Pearce, A. W., Lyons, S. E., Drescher, G. L., & Smartt, A. D. (2022). Soybean Yield Response to Fertilizer-Phosphorus Rate on Soils having different Mehlich-3 Phosphorus Values in Arkansas. *Ag Data Commons*. https://doi.org/10.15482/USDA.ADC/1524648
- Sotomayor, D. R., & Araya, K. (2021). Improved Tropical Forage Fertilizer-P Calibration: In support of FRST to conduct state-level soil-fertility correlation and calibration trials for P and/or K. *Ag Data Commons*. https://doi.org/10.15482/USDA.ADC/1524294

- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

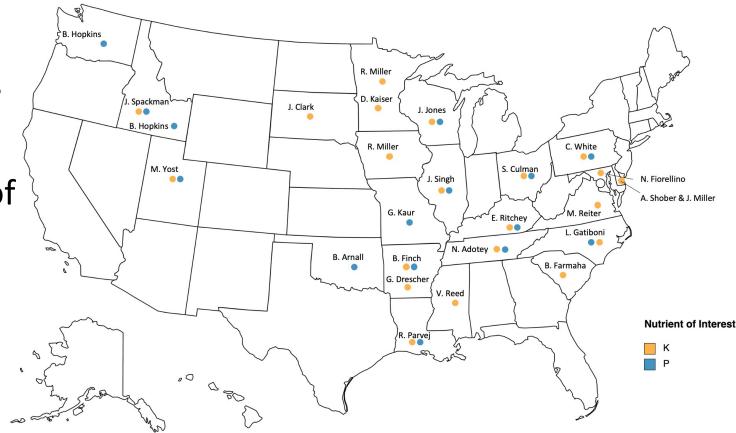
Importance of Relative Yield



Soil test level

Relative Yield Study

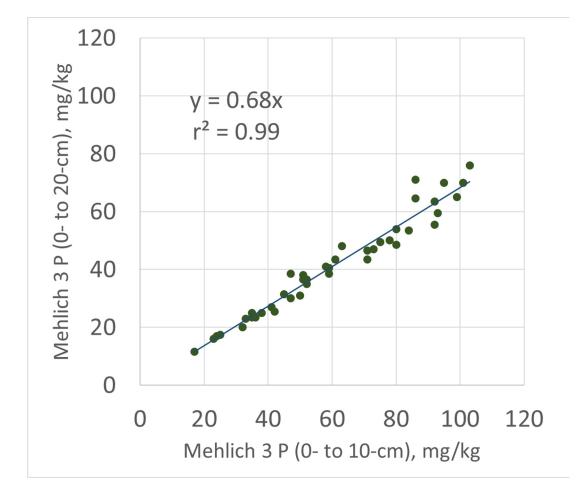
- Goal: Determine which definition(s) will be used in the Fertilizer Recommendation Support Tool (FRST).
- Consensus: Control yield/ Numerical maximum among all treatments (including control)
- SSSAJ doi:10.1002/saj2.20450


- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

Collaborator (State-level) Soil Test Correlation and Calibration Trials (2021-2023)

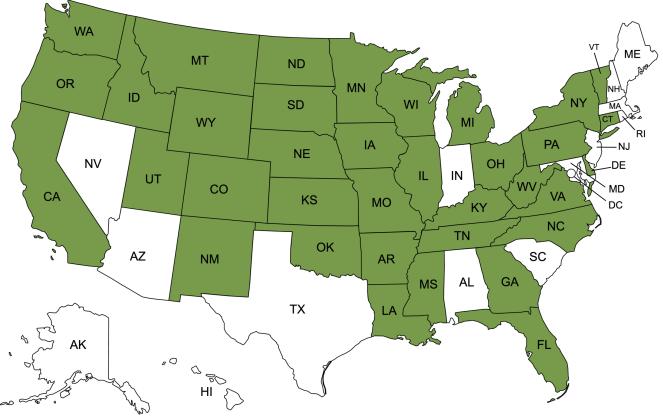
Objectives

- Involve more collaborators
- Collect additional data
- Test scripting and upload of minimum dataset from Excel into the relational database
- Determine ease of use of minimum dataset



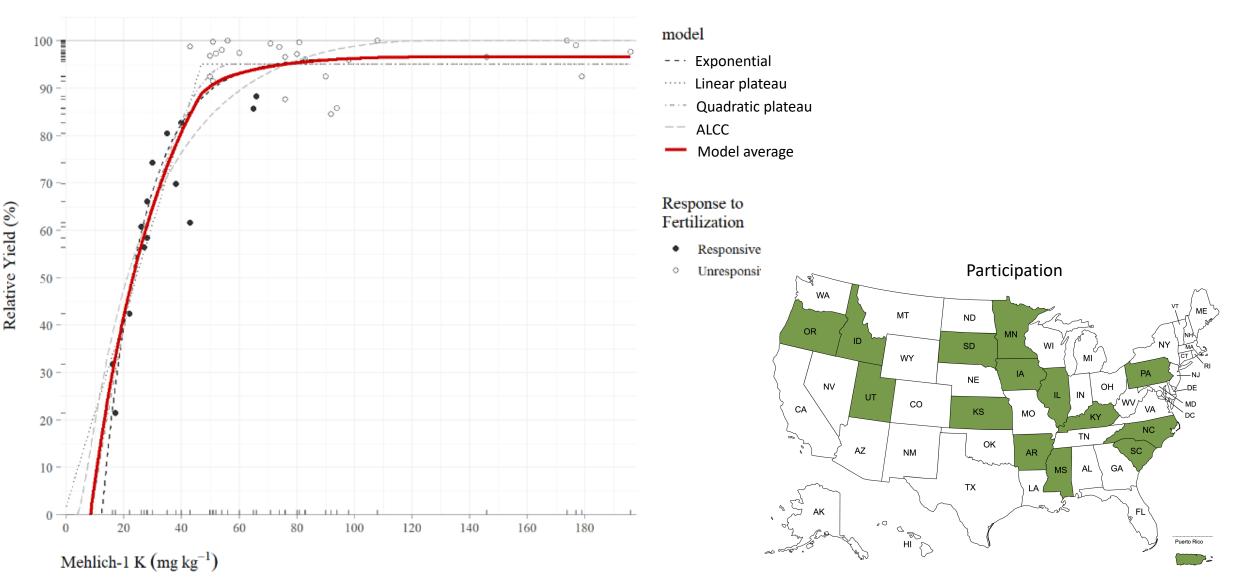
- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

FRST Sampling Depth Study: Goals


- Define a correction factor that can used to estimate equivalent soil test levels (and critical ranges) for different depths based on different metadata:
 - Cropping system
 - Management
 - Region/soil type

FRST Sampling Depth Study: Participation & Methods

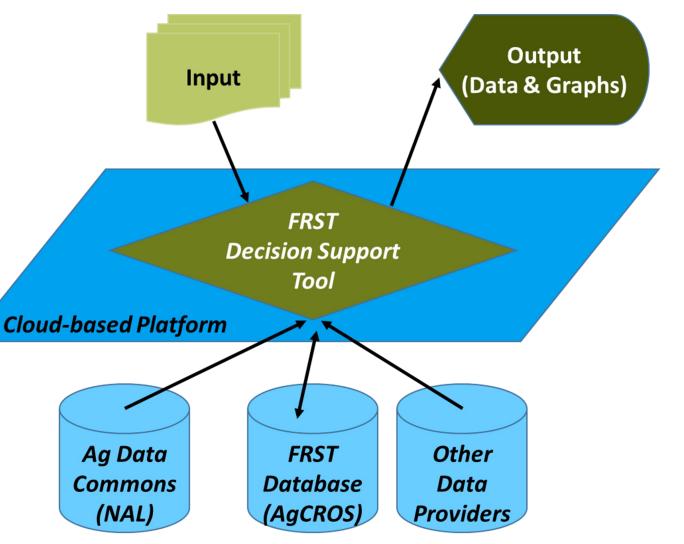
- 5-10 fields per state
- Samples to PSU for Mehlich 3, OM, pH; if northeastern state to Maine for Modified Morgan; if pH > 7.2 to KSU for Olsen
- Western states add a depth, 8-12"
- Metadata collected
- Results coming soon



- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

Model Selection for Critical Soil Test Value

- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)


FRST Decision Support Tool

Principles of model development:

- Resides in neutral space
- Software "perpetuity"
- Credit for contribution

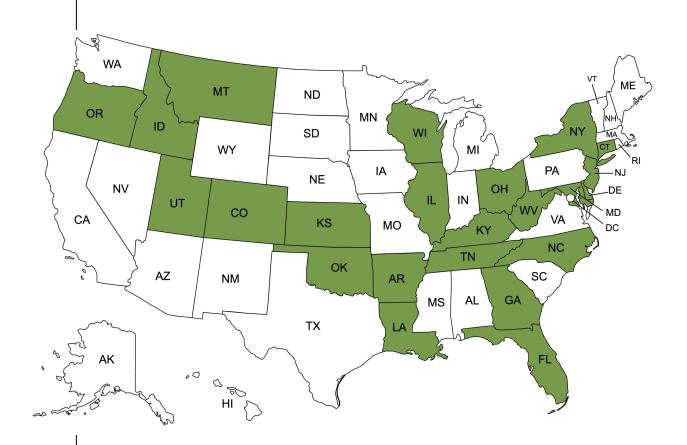
Status

- Data is imported
- Tool mechanisms + graphics being programmed
- Interface ready for beta testing this summer

- Survey of land grant faculty on current soil test practices and recommendations (Spargo)
- 2. Define a minimum dataset for soil test correlation and calibration trials (Slaton)
- 3. Collect legacy soil test correlation and calibration data and develop an accompanying relational database (Lyons and Buol)
- 4. Determine the most appropriate relative yield definition for FRST (Pearce, Lyons and Slaton)
- 5. Collaborator soil test fertility trials (Osmond and Lyons)
- 6. Sampling depth study (Culman and Spargo)
- 7. Modeling soil test correlation data (Pearce, Gatiboni, and Slaton)
- 8. WERA-103 comparison of P and K recommendations (Yost)
- 9. Develop a user-friendly, searchable interface (decision tool) and internal structure that allows for input, output, and geospatial context (Buol and Osmond)

FRST-Associated Project: Lime

GOALS AND OBJECTIVES FUNDING PROJECT TEAM AND COLLABORATORS PRESENTATIONS RESOURCES CONTACT



Soil Collection Template & Protocol (download here)

Meeting Notes (link)

Presentations (playlist)

www.soiltestfrst.org/lime

How ALTA Can Help FRST and Vice-versa

- FRST & ALTA have begun discussions for working together
 - ALTA team consists of some of the ALTA leadership (Corey Lacey, Tim Smith, Dustin Sawyer, and Bob Miller)
 - FRST team consists of some executive members (Deanna Osmond, Nathan Slaton, John Spargo, Matthew Yost, Daniel Kaiser, and Sarah Lyons)
- Regular meetings to discuss the state of soil testing and the FRST project
 - ALTA interested in having FRST provide short presentations on their work to their membership
 - ALTA-FRST group is developing a survey on how fertilizer recommendations are developed. ALTA will lead the effort to interview about 10 individuals
- ALTA will help beta test the FRST decision tool
 - We are looking for similar input/cooperation from across the USA to ensure a range of differences in geography and soil testing are represented in the FRST decision tool

GOALS AND OBJECTIVES

PRESENTATIONS

CONTAC

RESOURCES

PROJECT TEAM AND COLLABORATORS

Recommendation Support Tool

Increasing soil testing transparency by promoting clear and consistent interpretations of fertilizer recommendations by removing political and institutional (public and private) bias from soil test interpretation and providing the best possible science in order to enhance end-user adoption of nutrient management

recommendations.

www.soiltestfrst.org

Questions?

- Deanna Osmond, dosmond@ncsu.edu
- Sarah Lyons, selyons@ncsu.edu
- www.soiltestfrst.org
- Thank you to our sponsors, USDA-NRCS & USDA-ARS

